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We used historical data to build two types of model that predict Ground Delay Program

implementation and also produce insights into how and why those implementation deci-

sions are made. More specifically, we built behavioral cloning and inverse reinforcement

learning models that predict hourly Ground Delay Program implementation at Newark

Liberty International and San Francisco International airports. Data available to the mod-

els include actual and scheduled air traffic metrics and observed and forecasted weather

conditions. We found that the random forest behavioral cloning models we developed are

substantially better at predicting hourly Ground Delay Program implementation for these

airports than the inverse reinforcement learning models we developed. However, all of the

models struggle to predict the initialization and cancellation of Ground Delay Programs,

which are both rare events. We also investigated the structure of the models in order to

gain insights into Ground Delay Program implementation behavior. Notably, characteris-

tics of both types of model suggest that GDP implementation decisions are made primarily

based on conditions now or conditions anticipated in the next couple of hours.

Nomenclature

A set of all GDP implemented actions (GDP and no GDP)
at GDP implemented action in t (GDP or no GDP)
AARt airport arrival rate in t

bat number of flights in air buffer at t
b
g
t number of flights in ground buffer at t
controlledt true if the arrival rate is controlled by a GDP in t and false otherwise
f(s, a) M × 1 vector of reward features for state-action pair (s, a)
GDPt true if a GDP is implemented in t and false otherwise
M number of reward features
q(s, a) score for state-action pair (s, a); used by πC

R(s, a) reward for using action a in state s

RC(s, a) reward relative to πC

R̂C(s, a) regressor that approximates RC(s, a)
ratet controlled arrival rate for a GDP in t

S set of all states
st system state in t

scheduledt scheduled number of arrivals in t

t time step
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γ discount factor
πC deterministic score function-based multi-class classifier policy
π̂⋆

R̂C

rollouts policy that approximately optimizes with respect to reward function R̂C

θ̂ M × 1 vector of estimates of parameters in R̂C

I. Introduction

W
hen predictions of air traffic and capacity suggest that an excessive number of flights will arrive at an
airport at some future time, air traffic flow management (TFM) actions like Ground Delay Programs

(GDPs) can be used to delay flights on the ground, where delay is relatively inexpensive. These actions are
often used when a weather event such as high winds or low ceilings reduces the capacity of an airport. GDPs
are used hundreds of times per year at some airports,1 and each GDP can generate thousands of minutes of
ground delay. TFM actions are selected by human decision makers who must rely primarily on experience
and intuition because available forecasts of traffic and weather do not adequately account for uncertainties
and because they have access to few “what-if” simulation capabilities or other decision-support tools.2, 3 In
this research, we seek to use historical data to build models that can predict GDP actions and provide insight
into how and why they are selected. These predictions and insights might be useful in the development of
decision-support tools, for the training of air traffic managers, or when simulating airspace systems.

To gain insight into the decisions of these expert human decision makers and also to predict TFM actions
for use in decision-support tools or simulations, researchers have begun applying imitation learning techniques
in which demonstrations of the expert behavior found in historical data are used to develop models that mimic
expert actions.4 Some studies have used traditional classification or clustering techniques to build models
that predict or suggest TFM actions based on features describing the state of the air traffic system.5–9 For
example, Mukherjee, Grabbe, and Sridhar compared the performance of two classification models (logistic
regression and decision tree) that they trained to predict the probability of GDP implementation at an airport
based on features describing the current weather and traffic state at the airport.9 This approach to imitation
learning is known as behavioral cloning (BC), and it assumes that expert actions can be characterized
and modeled as a reaction to the current state. An alternative imitation learning approach is inverse

reinforcement learning (IRL). IRL is based upon a model of the system dynamics and how these dynamics
are affected by actions; a Markov decision process (MDP) model is typical. IRL assumes that the expert is
selecting actions in an attempt to maximize a total reward accumulated over time while operating within the
system model. IRL uses the demonstrations of the expert behavior found in historical data to infer a reward
function that is consistent with the expert behavior (assuming strategic and total-reward-maximizing expert
behavior). While BC can leverage powerful classification and clustering algorithms to make use of many
features describing the system state, it does not consider system dynamics as explicitly as IRL.4 Furthermore,
in problems described as “long-range” and “goal-directed,” IRL has been shown to produce models that
generalize to new environments better than models produced by BC.10 All TFM problems certainly involve
a dynamical system and, since GDP actions can cause ground delays for flights not scheduled to arrive at
a constrained airport for several hours, seem to be strategic. Although we are only aware of applications
of IRL to systems considerably simpler than the selection of GDP actions, these characteristics of GDPs
suggest that IRL may produce models that can predict and provide insight into expert GDP actions. Even if
IRL models produce relatively poor predictions, the reward function inferred by IRL algorithms may provide
a “succinct, robust, and transferable” definition of when to implement GDPs.11 Insights gleaned from such
a reward function could guide researchers as they develop TFM decision-support tools.12, 13

In this paper, we deploy both BC and IRL techniques to model and predict hourly expert GDP imple-
mentation actions. GDPs at Newark Liberty International (EWR) and San Francisco International (SFO)
airports are analyzed. The two classes of imitation learning techniques will be provided with training data
sets including historical scheduled and actual air traffic and forecasted and observed weather conditions as
well as corresponding historical GDP actions. The models produced by the two classes of techniques will be
compared based on their predictive performance when deployed on testing data sets and also based on the
insights they provide.

The remainder of this paper is structured as follows. Section II reviews the data we use in this analysis.
Next, we specify the imitation learning GDP models that are developed in this research in Section III.
We evaluate the quality of model predictions with some experiments described in Section IV. We also
investigate the models to glean insight into GDP implementation behavior in that Section. Finally, we
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provide conclusions in Section V and suggest future work in Section VI.

II. Data

In this Section, we describe the data that is used to quantify the system state for GDP models attempting
to predict GDP actions. These data have been collected for EWR and SFO for the 151 days from 1 May
2011 through 29 September 2011, the 152 days from 1 May 2012 through 30 Septemeber 2012, and the
152 days from 1 May 2013 through 30 September 2013; there were 455 total days in the data set from
these three summers. We studied EWR and SFO because in recent years, GDPs have been used at these
airports more than at any other airports.1 Indeed, there were 208 and 297 GDPs utilized at EWR and SFO,
respectively, during these 455 days. Assuming no more than one GDP was used per airport per day (as
is typical), a GDP was utilized at EWR in more than 45% of these days and at SFO in more than 65%
of these days. Furthermore, we expect there to be meaningful differences in GDP decision-making practice
for the two airports. This expectation is motivated in part by differences between the weather phenomena
typically leading to decreased arrival capacities at these two airports (winds at EWR but low ceilings at
SFO).1 This expectation is also motivated by differences between the characteristics of arrival traffic demand
at the two airports. For example, due to its relative proximity to multiple metropolitan areas in the eastern
and midwestern United States, a larger fraction of flights bound to EWR than to SFO originate within a
relatively short distance of the airport.

The causes of reduced airport capacity can vary between summer and winter months, so we simplified
the problem by choosing to study only summer months. For example, some GDPs at EWR are reported
as caused by “snow/ice,” but by using only summer months we avoid the need to develop models that
can account for such GDPs.1 Night-time data were removed from consideration because, due to low traffic
volumes, GDPs are typically not used during the night. Hourly samples of each type of data were generated
from 11:00 UTC (7:00 am EDT) through 06:00 UTC (2:00 am EDT) on the next day (20 hours per day)
for EWR and from 12:00 UTC (5:00 am PDT) through 09:00 (2:00 am PDT) on the next day (22 hours per
day) for SFO. Overall, this leads to 9100 hourly data points for EWR and 10, 010 for SFO.

At each hour, some predictions of future states are available. For example, arrival schedules are a
simple prediction of future arrival traffic levels, and weather forecasts provide predictions of future weather
conditions. The set of features for each hour includes these predictions at one-hour intervals starting an hour
from the current time and extending to the hour starting four hours from the current time. We chose to
provide predictions that extend this far into the future because providing models with predictions extending
further into the future did not improve predictive performance. Overall, 122 features describing the state
were made available to GDP models. These features will be described in the following sub-sections.

A. Weather Observations

Observations of weather conditions at an airport are recorded in METAR reports, which we retrieve from the
FAA’s Aviation System Performance Metrics (ASPM) database.14 These data include the meteorological
conditions (instrument or visual), ceiling height and its change since the last hour, visibility distance, wind
speed, and wind angle (six features).

B. Weather Forecast

Terminal Aerodrome Forecasts (TAFs) provide predictions of weather conditions at an airport that extend
24 hours or more into the future, and they are often used by TFM decision makers. At EWR and SFO, TAFs
were published at least every three hours during the time period we are studying. From TAFs, we extract
predictions of conditions at the hour starting at the current time through the hour starting four hours from
the current time. For each of these five hours, we include a feature for the meteorological conditions (visual,
marginal visual, instrument, or low instrument), ceiling height and its change since the last hour (change
only computed for hours after the current hour), whether ceiling heights are “temporary,” wind speed, wind
direction, wind gust speed, landing runway cross wind speed for the preferred runway configuration, landing
runway head wind speed for the preferred runway configuration, visibility distance, whether the visibility
distance is greater than the specified quantity, whether the visibility conditions are “temporary,” the intensity
of precipitation, the intensity of obscuration, and whether precipitation and obscuration are “temporary.”

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 2

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
20

26
 



There are 14 features specified for 5 hours and one (change in ceiling height) for 4 hours, which means there
are 74 features derived from the TAF for each hour.

C. Number of Scheduled Arrivals

ASPM records also contain the number of scheduled arrivals at the airport during each quarter hour. We use
these records to generate a feature denoting the scheduled arrivals during the hour starting at the current
time and extending through the hour starting four hours from now (five features).

D. Current Airport State

Two other features that describe the current state of the airport are also extracted from ASPM records: the
airport arrival rate (AAR) for the current hour and the runway configuration.

E. Predictions of Future Airport Arrival Rates

GDPs are typically used when an airport’s arrival capacity, quantified by the AAR, is expected to be too
low to handle the predicted number of arrivals. The AAR selected by traffic managers depends on factors
like runway configurations, weather conditions, and the type of aircraft that are scheduled to arrive at the
airport. Other researchers have developed AAR prediction models,15–22 and we implemented a model similar
to the bagged decision tree model proposed by Provan, Cunningham, and Cook in Refs. 20 and 21. This
type of model worked well not only for Provan, Cunningham, and Cook, but also for Wang in Refs. 17 and
19. The AAR predictions from this model for the hour starting one hour from the current time through the
hour starting four hours from the current time are provided to the GDP models (four features).

F. Reroutes

Reroute advisories were collected from the FAA’s National Traffic Management Log (NTML) and used to
construct features describing reroutes required or recommended for flights bound to the airport. GDPs are
sometimes used to help address reductions in the capacity of airspace typically used by flights headed to
the airport, such as airspace near arrival fixes. This sort of capacity reduction also may result in reroutes,
so these features attempt to quantify reductions in airspace capacity that may cause GDP implementation.
More precisely, for the hour starting at the current time through the hour starting 4 hours from the current
time, there are 4 reroute-related features (20 total). Two of these report the number of departure Air Route
Traffic Control Centers (ARTCCs or Centers) and departure airports for which reroutes are recommended for
flights bound to the airport. The other two features report the number of departure Centers and departure
airports for which reroutes are required for flights bound to the airport.

G. Previous GDP Plan

GDP plan data was also retrieved from the FAA’s NTML. While GDP plans are sometimes modified, selected
GDP actions often are a continuation of a previously-announced plan. For each hour, we quantify the GDP
action that would be pursued at the start of the hour, assuming the GDP plan as specified one hour ago is
simply continued. The features describing the previous plan include whether or not there would be a GDP
implemented, the GDP scopea, the number of hours until the first hour of controlled GDP rates, the number
of hours until the last hour of controlled GDP rates, and the GDP rate that should be in place for each
relevant hour of the GDP (from the hour starting at the current time through the hour starting four hours
from the current time). This means that there are nine features describing the previous GDP plan for each
hourly time step.

H. Ground and Air Buffers

One of the fundamental purposes of a GDP is to prescribe ground delay, which is cheaper than delay absorbed
in the air, when some delay must be absorbed. Therefore, we defined a simple deterministic queuing network
model with buffers for flights delayed on the ground and in the air. It provides estimates of two quantities

aThe scope is a distance typically measured in miles or a number of Air Route Traffic Control Centers from the destination
airport. Flights departing from further than the specified scope are not subject to ground delays imposed by a GDP.
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that are essential to GDP planning: how much delay is absorbed on the ground and in the air as a result
of GDP actions. This model is similar to the deterministic queuing model utilized by Kim and Hansen in
Ref. 23 and the stochastic queuing model proposed by Odoni and discussed by Ball et al. in sub-section 4.3 of
Ref. 24. Although this model certainly fails to capture several relevant aspects of GDPs (such as differences
in flight times between flights), our hope is that it is simple but not simplistic: that it captures enough
of the relevant characteristics of the real world to be useful for GDP analytics, but without the burden of
unnecessary complexity.

The number of flights in the ground buffer at the start of time step t is b
g
t
and the number in the air

buffer is ba
t
. At the start of each day, the ground and air buffers are initialized to zero. Then, the system

dynamics specify that the buffer levels at the start of the next time step (bg
t+1 and bat+1) depend on the

scheduled arrivals (scheduledt) and AAR (AARt) during time step t, as well as bg
t
, ba

t
, and the GDP action

implemented in this time step. If a GDP was implemented during t (GDPt), then the relevant components
of the GDP action are whether or not the arrival rate is controlled by the GDP during t (controlledt) and
the controlled arrival rate during t (ratet). The buffer levels are updated according to

b
g
t+1 =







[bgt + scheduledt − ratet]+ if GDPt and controlledt

0 else
(1)

and

bat+1 =







[ba
t
+min(bgt + scheduledt, ratet)−AARt]+ if GDPt and controlledt

[ba
t
+ b

g
t
+ scheduledt −AARt]+ else.

(2)

Here [x]+ is equal to x if x ≥ 0 but equal to 0 if x < 0. Fig. 1 depicts this simple queuing model when a
GDP is implemented.

b
g
t

ba
t

scheduledt ratet AARt

Figure 1: Ground and air buffer system model.

III. GDP Models

The structure we specified and used for both BC and IRL GDP models is depicted in Fig. 2. The
input data that can be used by the models is described in Section II. The output of the model is either a
prediction that a GDP would not be implemented in the state quantified by the input data, or a prediction
that a GDP would be implemented, along with predictions of the GDP parameters that would be used in
the state quantified by the input data. The GDP parameters include the GDP scope, the time when the
controlled rates in the GDP begin (the GDP start time), the number of hours of enforced GDP rates (the
GDP duration), and the enforced rate for each hour in the GDP duration, extending from the hour starting
at the current time through the hour starting four hours in the future (up to five hourly rates). There are
two sub-models: one that predicts whether or not a GDP will be implemented and another that predicts
GDP parameters when a GDP is initialized. The model is a simplification of reality in that it requires that
a GDP plan either progress as planned or be canceled (no modifications or extensions are permitted).

A. GDP Implemented Models

A GDP implemented model predicts whether or not a GDP will be implemented during a given hour, given a
set of features describing the state (see Section II). BC and IRL GDP implemented models will be developed
and compared. The specific BC and IRL algorithms will be discussed in the next two sub-sections.
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GDP

implemented

model

weather observations

weather forecast

traffic schedule

AAR

runway configuration

predicted AARs

reroutes

previous GDP plan

ground & air buffers

implement

GDP

do not

implement

GDP

GDP

parameters

GDP

parameters

model

GDP plan:

- scope

- start time

- duration

- rates

GDP plan:

no GDP

Figure 2: Structure of GDP model.

1. BC: Random Forest Classifiers for Cancellation and Initialization

The structure of the BC model developed and analyzed for this research is depicted in Fig. 3. Depending
on whether or not the previous GDP plan specified that a GDP would be implemented in the current hour,
either a GDP cancellation or GDP initialization model is invoked. We hope that creating specific models for
what seem to be different decisions (GDP cancellation and GDP initialization) will lead to better predictive
performance, as well as to more refined insight into GDP decision making. An additional motivation for
building separate models for GDP cancellation and GDP initialization is that doing so facilitates the use of
over- and under-sampling to generate custom training data sets for each model, which helps each with the
difficult imbalanced classification problem it faces.

The GDP initialization model is provided with features describing the current state at the airport, but no
features describing the previous GDP plan because the previous plan was to not use a GDP. It then predicts
either that a GDP will be initialized or that no GDP will be initialized. The GDP cancellation model is
provided with features describing not only the current state at the airport, but also features describing the
previous GDP plan, such as the scope, planned end time, and rates. It then predicts either that the GDP
will continue as planned or that it will be canceled. In hours that are immediately after the planned end
of a GDP, the GDP cancellation model is not used because not implementing a GDP in that hour is not

a cancellation. The question in those hours is whether or not a new GDP will be initialized, so the GDP
initialization model is invoked.

The GDP cancellation and GDP initialization models are both random forest classification models, im-
plemented with the RandomForestClassifier class available in the scikit-learn package for the Python
programming language.25 Random forest models were selected because they typically perform well with
minimal tuning of the algorithms that train the models, they generally do not over-fit to the training data
even when provided with many features, and other researchers have found that related models predict AARs
better than alternative models.17, 19, 20, 26

Among all of the hours where a GDP is planned to be implemented, only in about one in ten hours is a
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GDP

cancellation

model

GDP

initialization

model

previous

GDP

plan

weather observations

weather forecast

traffic schedule

AAR

predicted AARs

runway configuration

reroutes

ground & air buffers

Plan to

implement

GDP?

Yes No

GDP

continues

or

GDP

cancellation

No GDP

or

GDP

initialized

Figure 3: Structure of the BC GDP implemented model.

GDP canceled in the data we are analyzing. Similarly, among all the hours where a GDP is not planned to
be implemented, only in about one in thirty hours is one initialized. When facing imbalanced data sets such
as these, predictive performance can sometimes be enhanced by using the Synthetic Minority Over-Sampling
Technique (SMOTE).27 We used an implementation of the SMOTE algorithm to generate synthetic minority
class (initialization and cancellation) data points,28 and we also under-sampled the majority class data points.
In particular, the number of minority samples was doubled by using SMOTE to generate synthetic samples,
and the majority samples were under-sampled so that there were four times as many (for EWR) or twice as
many (for SFO) majority-class samples as (real and synthetic) minority-class samples.

2. IRL: Cascaded Supervised Inverse Reinforcement Learning

The IRL algorithm selected for evaluation is the Cascaded Supervised Inverse Reinforcement Learning (CSI)
algorithm proposed by Klein, Piot, Geist, and Pietquin in Ref. 29. This approach was selected for several
reasons: it is relatively easy to implement, it does not require multiple computations of an optimal policy for
various possible reward functions, and it leverages existing classification and regression algorithms. Further-
more, it does not involve exploring the entire state space—just the states visited in the training data and
possibly in some additional simulations. Finally, the expert policy that produced the demonstrations in the
data is near-optimal for the reward function estimated by the CSI algorithm (see Ref. 29, Theorem 1). One
downside of the algorithm is that it assumes a deterministic expert policy that is optimal for a certain re-
ward function, which may not be the case for GDP decision making. This drawback did not prevent us from
selecting the CSI algorithm, however, because for this initial investigation we are working with deterministic
GDP implemented models.

There are six main elements involved in CSI. Each of these elements will be described in the subsequent
paragraphs.
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System Model : The CSI algorithm, like any other IRL algorithm, requires a system model. The system
state at a time step t is st, which is a member of a set of all possible states S. It involves an exogenous

state and a controlled state. The exogenous state is a vector of features describing the weather observations,
the weather forecast, the traffic schedule, the current AAR, the runway configuration, predicted AARs, and
reroutes (see Section II). GDP actions have no impact on the exogenous state dynamics in this model, and
the CSI algorithm allows us to proceed even though we assume that the state transition probabilities for
this part of the state are not specified. The controlled state contains the GDP action for this time step
prescribed by the previous GDP plan, ba

t
, and b

g
t
. The controlled state dynamics are impacted by GDP

actions as prescribed by Eqs. (1) and (2). The action at taken at t is binary: it specifies either that no
GDP is implemented or that a GDP is implemented in this time step (at ∈ A = {GDP, no GDP}). This is
a Markov model because the conditional distribution of future states depends only on the current state and
action, not on the whole history of states and actions.

Decision Process Model : We assume that traffic managers are attempting to maximize the expected value
of a discounted infinite sum of future rewards. More precisely, they seek a deterministic policy mapping states
to actions that maximizes E [

∑∞

t=0 γ
tR(st, at)] , where γ ∈ (0, 1) is the discount factor and R : S × A → R

is the reward for each time step. We choose an appropriate value for γ by selecting from a set of possible
values the one that achieves the best fit (as measured by R2 on testing data) when we conduct the reward
estimation step later in this sub-section. This value was 0.4 for EWR. For SFO, this value was actually 0.0
but we utilized a value of 0.2 instead because the fit was not much worse at γ = 0.2 and because γ = 0.0
suggests no strategic expert behavior, making the IRL algorithm simply a complex BC model.

Classifier Policy and Estimation of Optimal State-Action Value: Once the system and decision process
model have been specified, the next step in CSI is to derive a deterministic classifier policy πC : S → A.
This classifier policy can be any score function-based multi-class classifier (SFMC2). An SFMC2 predicts an
action that achieves the largest score according to some score function q(s, a): πC(s) ∈ argmax

a∈A q(s, a).
By interpreting the score function q(s, a) as an optimal state-action value function for πC and making use
of the Bellman equation, the CSI algorithm can use the score function and the policy to generate a reward
sample data point corresponding to each state-action pair. We will utilize a model similar to the random
forest BC GDP implemented model described in sub-section III.A.1 for the classifier policy πC. The score
function for a given state and action is the average over all the trees in the random forest of the fraction of
members in the leaf nodes for which the action was selected.

Reward Estimation with Regression: The next step in CSI is to use a regression algorithm to estimate a
reward function RC that is consistent with the reward samples produced by using the Bellman equation and
the score function q when it is interpreted as an optimal state-action value function for πC.

29 Any type of
regressor can be used, but we use a linear regressor model. Linear models are relatively easy to interpret, so
a trained linear regressor model should be relatively rich in insight. Furthermore, some proposed TFM and
GDP optimization approaches assume or even require a reward function that is linear in the optimization
decision variables (Refs. 2 and 24 describe examples of such approaches).

The form of a linear regressor model is R̂C(s, a) = θ̂⊤f(s, a), where f(s, a) ∈ RM is a vector of reward

features for the state-action pair (s, a) and θ̂ ∈ RM is a vector of parameters estimated by the regression
algorithm. The reward features we utilize were inspired by the objective function used in the Ground Delay
Program Parameter Selection Model12 and also by performance measures suggested by Ball et al.24 The
eight reward features are ground and air buffer levels at the end of the current time step, the change in the
air and ground buffers during this time step, an indicator that the air buffer will be greater than or equal to
five at the end of the current time step, the number of arrivals during the time step, the number of unused
arrival slots while the arrival rate is controlled by a GDP (i.e. while controlledt is true), and the canceled
duration of a canceled GDP.

Derivation of Approximately-Optimal Policy: We derive a policy π̂⋆

R̂C

that attempts to maximize the

infinite discounted total reward objective, defined based on R̂C, using an approximate dynamic programming
approach known as rollouts (see Ref. 30, sub-section 6.4). Ultimately, the prediction produced by the CSI
model of whether or not a GDP will be implemented when in state s will be the action returned by π̂⋆

R̂C

(s).

Other techniques from reinforcement learning and approximate dynamic programming could be used to
derive this policy. We selected rollouts because we could use weather forecast and traffic schedule data
already in the system state to perform the simulations required when estimating optimal state-action value
functions, which made the problem tractable in spite of the unknown state transition probabilities.
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B. GDP Parameters Model

As depicted in Fig. 2, a GDP parameters model was developed to predict the GDP scope, GDP start time,
GDP duration, and GDP rates. This model is only used in the final policy estimation step of the CSI
algorithm, described in sub-section III.A.2. Random forest BC models were used for each sub-model that
predicts one of the GDP parameters, and the predictions were rounded to the nearest typical value for
the parameter in question. Random forest models were selected because they perform well with relatively
little tuning of the algorithm that trains the models, they generally do not over-fit to the training data
even when provided with many features, and other researchers have had some success using related models
to predict AARs.17, 19, 20, 26 Random forest regression models for these parameters were trained with the
RandomForestRegressor class in the scikit-learn Python package25 using settings and parameters similar to
those suggested in Ref. 20. Although these models are not the focus of this research, we are not aware of
previous attempts at building models that predict GDP parameters.

IV. Experiments

Ten-fold cross validation is used in these experiments (see Ref. 26, sub-section 7.10.1). The folds are
defined based on days in the data set rather than individual time steps (hours). With 455 days in the data
set and ten folds, each fold consisted of all of the time steps in around 46 days. The experiments focus on
the GDP implemented models.

A. Prediction Quality Results

The prediction quality metrics for GDP implemented models are computed based on three confusion matrices
that can be constructed with the predictions for the testing data. The three matrices investigated here are
constructed with the data in the ten test data folds. Each hour-long time step in the full data set is in
a testing data fold exactly once, so the testing data contains each sample from the full data set exactly
once. The first confusion matrix describes predictions of hourly GDP implementation, the second describes
predictions of GDP initialization, and the third describes predictions of GDP cancellation. The first matrix
involves all the testing data points, the second and third matrices are based on only some of the testing
data points, and each data point is involved in either the second or the third matrix but not both. For each
confusion matrix, the accuracy, precision, recall, and F1-score will be reported. Each of these metrics will
be in the range [0, 1], with larger values indicating better predictive performance. Since precision and recall
are particularly relevant for imbalanced data sets, such as those faced by the initialization and cancellation
models, and since the F1-score is the harmonic mean of these two metrics, we view the F1-score as the most
important single metric that quantifies the predictive performance for each confusion matrix.

1. Baseline: Quality of GDP Plan Model Predictions

We will summarize the quality of predictions produced by a baseline model that simply predicts that the
previous GDP plan will be executed. If no GDP is planned for the hour in question, the model predicts
that no GDP will be initialized, and if a GDP is planned, then the model predicts that it will continue
and not be canceled. The F1-scores achieved by this model are 0.90 and 0.87 for GDP implementation at
EWR and SFO, respectively, which is suggestive of high-quality predictions. However, this model achieves a
recall of 0.00 and an undefined precision and F1-score for predictions of initializations and cancellations at
both airports. Initialization and cancellation events are important operationally, so this model’s failure to
predict these events reveals its limited operational value. Furthermore, this model’s performance illustrates
the importance of evaluating models based on their predictions of initializations and cancellations, not just
their predictions of GDP implementation.

2. Quality of BC GDP Implemented Model Predictions

Tables 1 and 2 show the three confusion matrices and related metrics achieved by the BC GDP implemented
models for EWR and SFO, respectively, when they are presented with the ten test data folds. For both EWR
and SFO, the accuracy, precision, recall, and F1-score of the overall GDP implemented models are relatively
close to one. However, this strong overall performance masks how much the GDP initialization and GDP
cancellation models struggle to predict the rare initialization and cancellation events. Although the F1-scores
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for predictions of GDP initialization and cancellation are slightly higher for SFO than for EWR, they all
range between 0.41 and 0.63, which is low. For both EWR and to a lesser extent SFO, the low precision
scores achieved by the GDP initialization models indicate a high false alarm rate—that they predict that
GDPs will be initialized much more frequently than they actually are initialized. The GDP initialization
data set is particularly imbalanced, with 34 and 26 times more non-initialization events than initialization
events for EWR and SFO, respectively. This makes predicting initializations difficult. The GDP cancellation
models also suffer from low precision scores, and again this is partially a result of the imbalanced nature of
the data set. There are 11 and 7 times more non-cancellation events than cancellation events for EWR and
SFO, respectively.

Table 1: Confusion Matrices for EWR BC GDP Implemented Model

(a) Implementation: accuracy=0.94, precision=0.83, recall=0.92, F1-score=0.88

Actual Predicted No GDP Predicted GDP Total

No GDP 6801 357 7158

GDP 151 1791 1942

Total 6952 2148 9100

(b) Initialization: accuracy=0.95, precision=0.31, recall=0.62, F1-score=0.41

Actual Predicted No Initialization Predicted Initialization Total

No Initialization 6707 286 6993

Initialization 80 128 208

Total 6787 414 7201

(c) Cancellation: accuracy=0.93, precision=0.57, recall=0.57, F1-score=0.57

Actual Predicted Continuation Predicted Cancellation Total

Continuation 1663 71 1734

Cancellation 71 94 165

Total 1734 165 1899

Table 2: Confusion Matrices for SFO BC GDP Implemented Model

(a) Implementation: accuracy=0.95, precision=0.84, recall=0.90, F1-score=0.87

Actual Predicted No GDP Predicted GDP Total

No GDP 7616 346 7962

GDP 203 1845 2048

Total 7819 2191 10010

(b) Initialization: accuracy=0.96, precision=0.49, recall=0.88, F1-score=0.63

Actual Predicted No Initialization Predicted Initialization Total

No Initialization 7443 270 7713

Initialization 36 261 297

Total 7479 531 8010

(c) Cancellation: accuracy=0.88, precision=0.51, recall=0.69, F1-score=0.59

Actual Predicted Continuation Predicted Cancellation Total

Continuation 1584 167 1751

Cancellation 76 173 249

Total 1660 340 2000
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3. Quality of IRL GDP Implemented Model Predictions

Tables 3 and 4 show the three confusion matrices and related metrics achieved by the IRL GDP implemented
models for EWR and SFO, respectively, when they are presented with the ten test data folds. For both
EWR and SFO, the IRL GDP implemented models demonstrate substantially lower predictive performance
than the BC GDP implemented models. This is most evident for predictions of GDP initialization: the
EWR IRL model predicts initialization much too frequently while the SFO IRL model predicts initialization
too infrequently. The SFO IRL model also predicts GDP cancellation too infrequently.

Table 3: Confusion Matrices for EWR IRL GDP Implemented Model

(a) Implementation: accuracy=0.80, precision=0.52, recall=0.92, F1-score=0.67

Actual Predicted No GDP Predicted GDP Total

No GDP 5535 1623 7158

GDP 159 1783 1942

Total 5694 3406 9100

(b) Initialization: accuracy=0.78, precision=0.084, recall=0.67, F1-score=0.15

Actual Predicted No Initialization Predicted Initialization Total

No Initialization 5468 1525 6993

Initialization 68 140 208

Total 5536 1665 7201

(c) Cancellation: accuracy=0.90, precision=0.42, recall=0.41, F1-score=0.41

Actual Predicted Continuation Predicted Cancellation Total

Continuation 1643 91 1734

Cancellation 98 67 165

Total 1741 158 1899

Table 4: Confusion Matrices for SFO IRL GDP Implemented Model

(a) Implementation: accuracy=0.94, precision=0.85, recall=0.84, F1-score=0.84

Actual Predicted No GDP Predicted GDP Total

No GDP 7647 315 7962

GDP 320 1728 2048

Total 7967 2043 10010

(b) Initialization: accuracy=0.95, precision=0.17, recall=0.088, F1-score=0.12

Actual Predicted No Initialization Predicted Initialization Total

No Initialization 7585 128 7713

Initialization 271 26 297

Total 7856 154 8010

(c) Cancellation: accuracy=0.88, precision=0.56, recall=0.25, F1-score=0.34

Actual Predicted Continuation Predicted Cancellation Total

Continuation 1702 49 1751

Cancellation 187 62 249

Total 1889 111 2000

Although it is difficult to determine exactly what causes the relatively poor predictive performance of
the IRL GDP implemented models, the results of diagnostic tests31 and analysis of the estimated regressor
parameters (see sub-section IV.B.2) suggest that the poor predictive performance of the reward regressor is
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likely an important cause. The reward regressor’s poor performance may in turn be the result of using invalid
assumptions to specify the regression problem (such as CSI’s assumption of a deterministic and optimal
expert policy), of selecting a reward regressor model form that is not suited to the regression problem, or of
using an inaccurate or incomplete set of reward features. Several reward features are derived from the state
of the ground and air buffer system model, and our intuition is that the fidelity of this system model may
need to be improved.

B. Insight Results

1. Insight from BC GDP Implemented Model

The main form of insight available from the random forest models used in the BC GDP implemented model
is feature importance scores. The importance score for a feature is the total decrease in node “impurity” (as
measured by the Gini splitting criterion) resulting from splits defined based on the feature and weighted by the
proportion of samples reaching the corresponding nodes, averaged over all the trees in the ensemble. Based
on this definition, important features define frequently-used splits and/or generate large improvements in
the split criterion when they are used to define splits. Larger scores imply greater importance. We recorded
the importance scores of the input features used by the models for each of the ten times the models are
trained.

Figures 4 and 5 show the scores for the features with the ten highest importance scores for initialization
and cancellation models that make up the BC GDP implemented models for EWR and SFO, respectively.
The height of each bar is the mean of the importance scores for each feature according to the 10 models
constructed for the ten training data sets used in cross validation, and the error bars show the standard
deviation of these ten importance scores. Features names ending with a “ k” for some integer k are predictions
of the feature for the hour starting k hours from the time of the prediction.

For the EWR GDP initialization model, features related to the AAR (“AAR”) or a prediction of the AAR
(“Pred AAR”) make up five of these ten features. This suggests that future AAR levels have a relatively
strong influence on GDP initialization, which makes sense given that GDPs are used when expected arrival
demand exceeds expected arrival capacity and that arrival capacity is quantified by AAR. Features related
to scheduled arrivals (“SCHARR”) account for another four of the ten features, which is also not surprising
because GDPs are used to reduce arrivals when predictions suggest that there might be an excessive number
of arrivals. The tenth feature in this set is a prediction of the number of departure Centers for which reroutes
are required three hours in the future (“Centers Rerouted 3”), suggesting that GDPs are initialized at EWR
to help reduce demand for constrained airspace. This makes sense because flights bound for EWR typically
traverse highly congested airspace in the northeastern United States.

For the EWR GDP cancellation model, five features related to parameters of the previous GDP plan,
such as the planned time until the end of the GDP (“Prev GDP LATS to end”b) and planned GDP rates
(“Prev GDP Rate”), achieve high average importance scores. This suggests that GDPs tend to be canceled
when the previous plan indicates that they are close to finishing, which makes sense because presumably
experts select appropriate end times when constructing the GDP plan. Features related to scheduled arrivals
(“SCHARR”) account for four of the remaining features achieving the ten highest importance scores. This
makes sense because if scheduled arrivals are low, a GDP may no longer be needed. The final feature in
this set is a reroute-related feature (“Centers Rerouted 2”), again suggesting that EWR GDPs might be
partially caused by congested airspace that also requires new routes for flights bound for EWR.

Of the ten features with the largest average importance scores for the SFO GDP initialization model,
four are related to observations or forecasts valid at some hour in the upcoming three hours of the ceiling
or meteorological conditions (“CEILING”c, “Ceiling 0”d, “Ceiling 1”, and “Met Conds 1”). This is not
surprising given that SFO GDPs are largely caused by low ceilings.1 Only one feature in this set is an
AAR (“Pred AAR 2”), which is fewer than the five such features for the EWR GDP initialization model.
This might be because while the weather conditions that lead to lower capacity at SFO are relatively
straightforward to describe and quantify, enabling the SFO model to identify and depend upon them directly,
the capacity at EWR is more a more complicated function of a variety of weather and other conditions, leading

b“Prev GDP LATS to end” is the number of look-ahead time steps (hours) until the end of the GDP prescribed by the
previous GDP plan.

c“CEILING” is the observation of the ceiling at the current hour recorded in a METAR report.
d“Ceiling 0” is the prediction of the ceiling from a TAF forecast that is valid for the current hour. The TAF forecast may

have been published very recently, or it may have been published up to three hours ago.
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(b) GDP cancellation model.

Figure 4: Features with highest importance scores for the EWR BC GDP implemented model.

the EWRmodel to depend on AAR predictions (rather than directly on weather conditions). Features related
to scheduled arrivals make up five of the ten features, which is also not surprising for reasons described earlier.

Finally, for the SFO GDP cancellation model, five of the ten features achieving the largest average
importance scores come from the previous GDP plan (such as “Prev GDP LATS to end” and planned GDP
rates). This result is consistent with the intuitive claim that the current GDP plan, particularly the planned
remaining duration, is helpful when predicting SFO GDP cancellations. The planned rates may be important
because they are another way to learn the planned remaining duration, or perhaps because they may indicate
the degree to which capacity is diminished (GDPs might be less likely to be canceled when capacity is lower).
Predicted or current AARs make up four other of these features, and the current ceiling is the final feature
in the set. Unlike in the EWR GDP cancellation model, no features related to scheduled arrivals achieve
top-ten importance scores in the SFO GDP cancellation model.

As was mentioned in Section II, we found that providing features describing predictions extending beyond
four hours did not improve the predictive power of this type of model. This provides some insight: it is
consistent with the claim that decision makers are not concerned with conditions extending beyond four
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Figure 5: Features with highest importance scores for the SFO BC GDP implemented model.

hours in the future when they determine whether or not to use a GDP.

2. Insight from IRL GDP Implemented Model

Although our evaluation suggests that the predictive power of the IRL GDP implemented model is low,
the estimated parameters θ̂ for the reward function regressor R̂C(s, a) = θ̂⊤f(s, a) still may provide some
useful insights. Even these insights should be viewed with suspicion, however, because R̂C struggled to fit
the reward sample training data. In the ten training data sets used in cross validation, the average R2 value
achieved by R̂C was only 0.29 for EWR and 0.23 for SFO. These low values suggest that R̂C is not explaining
much of the variation of the reward samples in the training data set. We suspect that this poor performance
is an important cause of the poor predictive power of the IRL GDP implemented model, and improving the
performance of the reward regressor is a topic for future research.

Table 5 shows average reward parameter estimates and corresponding average p-values for the ten re-
gressors trained with the ten training data folds used in cross validation. Before training R̂C, scalar-valued
reward features were standardized over the time steps for which they are defined, while the lone indicator
feature (which takes a value of one when the air buffer at the end of the time step is greater than or equal
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to five and zero otherwise) was not standardized. This facilitates interpretation of the parameter estimates
by making comparisons of their relative magnitudes more meaningful. When constructing reward samples
to train R̂C, we used γ = 0.4 for EWR and γ = 0.2 for SFO. Therefore, the ranges of possible and typical
reward sample values differ between the two airports, and so we cannot directly compare the values of the
estimated parameters between airports.

Table 5: Average Estimated Parameters and Average p-Values of R̂C for EWR and SFO

EWR SFO

Reward Feature (fm(s, a)) θ̂m p-value θ̂m p-value

constant 0.53 < 0.001 0.71 < 0.001

ground buffer at end of time step 0.0049 0.097 −0.017 < 0.001

change in ground buffer 0.0074 0.17 −0.00062 0.46

air buffer at end of time step 0.014 < 0.001 −0.0023 0.50

change in air buffer −0.035 < 0.001 −0.035 < 0.001

air buffer at end of time step ≥ 5 −0.24 < 0.001 −0.20 < 0.001

arrivals −0.029 < 0.001 0.0071 0.011

unused slots during rate control −0.15 < 0.001 −0.19 < 0.001

duration of GDP canceled −0.055 0.033 −0.073 < 0.001

The reward regressors for the two airports are remarkably similar. This similarity is consistent with
the conjecture that while different phenomena cause congestion issues leading to GDPs at these two air-
ports (evidenced by the different important features in the two BC GDP initialization models described
in sub-section IV.B.1), GDPs are implemented to achieve roughly the same objectives at both airports.
Furthermore, this similarity illustrates the potential of IRL algorithms to identify reward functions and
corresponding policies that generalize—that work in a variety of contexts, including those not represented
in training data. More specifically, if non-constant reward features that achieve p-values less than 0.05 are
sorted from largest to smallest magnitude of the average corresponding parameter estimate, the order of
the top four features is identical for the two airports: the indicator that the air buffer at the end of the
time step is greater than or equal to five, the number of unused slots during rate control, the duration of
GDP canceled, and the change in the air buffer. These parameter estimates are all negative, as would be
expected. The estimates also quantify the balance achieved by traffic managers as they face a fundamental
trade-off in GDP implementation: airborne delay is expensive, and implementing GDPs can help achieve
it, but excessive GDP implementation can lead to undesired under-utilization of available capacity. The
objective functions used in various algorithms,2, 24 including one in an operational GDP decision-support
tool,12 all specify some balance for this trade-off. However, as far as we know, this is the first time that
the balance achieved in current operations has been inferred directly from historical traffic flow management
initiatives and related data.

If we investigate the average parameter estimates for less important features (those that achieve relatively
high p-values and/or average parameter estimates with small magnitudes), then we find some differences
between the regressors for the two airports. For example, while the average parameter estimates for buffer
levels and changes in buffer levels are all negative for the regressors for SFO, as would be expected, this is
not the case for EWR. Furthermore, while the average estimate of the parameter corresponding to arrivals is
slightly positive for the SFO regressors, this value is slightly negative for the EWR regressors. These counter-
intuitive parameter estimates may help explain why the EWR IRL GDP implemented model over-predicted
GDP initialization.

As was mentioned in Section III.A.2, we selected discount factors of 0.4 for EWR and 0.2 for SFO based
on how well the regressors were able to fit the resulting reward sample data (as measured by R2). This
suggests that when determining whether or not to use a GDP, decision makers are concerned with rewards
extending only a few hours into the future, and that by far the greatest importance is given to rewards in
the current time step. This is consistent our observation that predictions of conditions more than four hours
into the future do not improve the predictive performance of the BC GDP implemented models.
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V. Conclusions

GDPs seem to be a tool for strategically managing traffic in an effort to achieve desired values for certain
metrics, suggesting that IRL may be a promising technique for GDP analytics. Therefore, we compared
IRL models of GDP implementation to BC models. More precisely, we developed BC models of GDP
implementation that are based on random forest models of GDP initialization and GDP cancellation. We
used the CSI IRL algorithm to infer reward functions consistent with historical state and action data and
then used rollouts to find policies attempting to optimize expected total discounted reward objectives based
on the inferred reward functions. Furthermore, we implemented BC models for GDP parameters that are
used by the rollouts policies. The models were developed for EWR and SFO and evaluated using cross
validation on a data set consisting of 455 days in the summers of 2011–2013.

The BC GDP implemented models we developed for EWR and SFO demonstrate substantially stronger
predictive performance than the IRL GDP implemented models we developed when predicting GDP imple-
mentation on testing data. However, our experiments also suggest that none of the models predict the rare
GDP initialization or cancellation events well. Although they do not prove anything about the decision-
making process, the results presented here suggest that decisions regarding whether or not to implement
a GDP in a given hour are better modeled as a reaction to the current situation rather than an effort to
deterministically and strategically achieve rewards accrued over time.

We also investigated the structure of the models in order to gain insights into GDP implementation
behavior. Feature importance scores derived from the structure of the random forest BC GDP initialization
and GDP cancellation models suggest that the set of most important features varies between airports; features
related to scheduled arrivals, predicted airport arrival capacity levels, the previous GDP plan, certain weather
conditions, and reroutes are most important for one or both airports. The reward functions inferred by the
IRL algorithm are not able to achieve a good fit of the training data, but their structures suggest that
decision makers at both airports are primarily concerned with avoiding relatively large numbers of flights
that must incur delay in the air, avoiding unused arrival slots while delaying flights on the ground to achieve
a certain rate of arrivals at the airport, and avoiding canceling a GDP long before its planned end time.

Features related to predictions of conditions more than four hours in the future do not improve the
predictive power of the BC GDP implemented models. Similarly, we selected low discount factors of 0.4 for
EWR and 0.2 for SFO for use in the IRL algorithm because these values led to reward training data that the
reward regressor was better able to fit. These characteristics of the BC and IRL models are inferred from
historical data and suggest that GDP implementation decisions are made primarily based on conditions now
or conditions anticipated in the next couple of hours.

VI. Future Work

The techniques used to train the many models involved in this research could be refined, and different
types of models could be evaluated. For example, our intuition is that the ground and air buffer system
model might be too simple, so it may be wise to utilize a more complex model that leverages higher-resolution
traffic demand data (e.g. flight plans). Furthermore, we could investigate stochastic models of GDP decision
making. These models might be more realistic in the sense that the same GDP decisions might not be
made each time the system is in a particular state, given the data we use to define the state. Furthermore,
probabilistic predictions might be more useful and insightful than deterministic predictions.
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